Cutting Temperature and Cooling Effects in End Milling of Bone
نویسندگان
چکیده
منابع مشابه
Study of Cutting Temperature in Orthogonal Milling
Finite Element Method (FEM) based techniques are available to simulate metal cutting processes and offer several advantages including prediction of tool forces, distribution of stresses, and temperatures, estimation of tool wear, and residual stresses on machined surfaces, optimization of cutting tool geometry, and cutting conditions. However, work material flow stress and friction characterist...
متن کاملCutting Force Prediction in End Milling Process of AISI 304 Steel Using Solid Carbide Tools
In the present study, an attempt has been made to experimentally investigate the effects of cutting parameters on cutting force in end milling of AISI 304 steel with solid carbide tools. Experiments were conducted based on four factors and five level central composite rotatable design. Mathematical model has been developed to predict the cutting forces in terms of cutting parameters such as he...
متن کاملModelling and Numerical Simulation of Cutting Stress in End Milling of Titanium Alloy using Carbide Coated Tool
Based on the cutting force theory, the cutting stress in end milling operation was predicted satisfactorily through simulation of using finite element method. The mechanistic force models were introduced in high accuracy force predictions for most applications. The material properties in the simulations were defined based on the cutting force theory, as a function of strain and strain rate wher...
متن کاملModeling of three-dimensional cutting forces in micro-end-milling
A new nominal uncut chip thickness algorithm for micro-scale end-milling is proposed by considering the combination of an exact trochoidal trajectory of the tool tip and tool run-out, and then the actual uncut chip thickness may be obtained from a comparison between the current accumulative uncut chip thickness and the minimum chip thickness. Due to the intermittency of the chip formation, the ...
متن کاملIntelligent Adaptive Cutting Force Control in End-milling
In this article, an adaptive neural controller for the ball end-milling process is described. Architecture with two different kinds of neural networks is proposed, and is used for the on-line optimal control of the milling process. A BP neural network is used to identify the milling state and to determine the optimal cutting inputs. The feedrate is selected as the optimised variable, and the mi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of the Japan Society for Precision Engineering, Contributed Papers
سال: 2006
ISSN: 1881-8722,1348-8724
DOI: 10.2493/jspe.72.276